Institut de Chimie & Biologie des Membranes & des Nano-objets • Bordeaux

LIA France-Japan GEM Réseau RMN Aquitain Master AC2QMAPS IPEP master UREKA UMT FOLIES INDIA
Offres d'Emploi Plateau Technique Conseil d'Unité Animation Scientifique WEB Editorial Committee Hygiène & Sécurité Communication Administration Directoire Scientifique Direction
Sophie Zinn-Justin, 14 April 2017, 11 am, IECB Christina Sizun, 18 May 2017, 4 pm, ENSCBP Cécile Feuillie, 16 February 2017, 4 PM, ENSCBP Félix M. Goñi, 8 december 2016, 4 pm, ENSCBP Félix M. Goñi, 17 november 2016, 4 pm, ENSCBP Carl Creutz, 20 october 2016, 4 pm, ENSCBP Diego Romero, 30 september 2016, 11 am, IECB A. Ciaccafava, 8 september 2016, 14h, ENSCBP A. Ramamoorthy, 16 June 2016, 16h, ENSCBP Alexandre de Brevern, 2 june 2016, ENSCBP Isabelle Landrieu, 26 May, 16h, ENSCBP Frances Sepavoric, 12 May, 16h, ENSCBP Thomas Pradeu, 7 April 2016, 9h, ENSCBP Françoise Argoul, 3 march 2016, 16h, ENSCBP Corinne Loutelier-Bourhis, 16/12/2015, 16h Aristotelis XENAKIS, 3 december 2015, 16h Fabian Kiessling, 26 november 2015, 11h Michaël Molinari, 20 november 2015, 11h Dipankar Das Sarma, 28 October 2015, 14h. Olivier Donard, 22 october 2015, 16h, ENSCBP E. Morvan & A.Grelard, 17/12/2015, 16h, ENSCBP Christophe Cullin, 10 september 2015, 14 h Brigitte Lindet, 18 June 2015, 16h, ENSCBP(B) Marion Decossas, 4 June 2015, 16h, ENSCBP(B) Pascale Schellenberger, 21 Mai 2015, 16h F. Leal-Calderon, 7 May 2015, 16h, ENSCBP(B) Ibrahim Abdulhalim, 9 April 2015, 14h, ENSCBP Manon Carré, 26 March 2015, 14h, ENSCBP(B) C. Bure & JM Schmitter, 19 March 2015, 16h T. Ogata & H. Ihara, 17 March 2015, 11h, IECB Banafshe Larijani, 12 March 2015, 16h, ENSCBP
Événements Nouveau
Partenariat Congés Formation Admin CBMN Conseil Institut/Scientifique
Affiliations Les sites CBMN
LIA France-Japan GEM Réseau RMN Aquitain Master AC2QMAPS IPEP master UREKA UMT FOLIES INDIA
Offres d'Emploi Plateau Technique Conseil d'Unité Animation Scientifique WEB Editorial Committee Hygiène & Sécurité Communication Administration Directoire Scientifique Direction
Chimie Biophysique Chimie Biomimétique et Thérapeuti... Biologie et Biotechnologie Administration
Sophie Zinn-Justin, 14 April 2017, ... Christina Sizun, 18 May 2017, 4 pm,... Cécile Feuillie, 16 February 2017,... Félix M. Goñi, 8 december 2016, 4... Félix M. Goñi, 17 november 2016, ... Carl Creutz, 20 october 2016, 4 pm,... Diego Romero, 30 september 2016, 11... A. Ciaccafava, 8 september 2016, 14... A. Ramamoorthy, 16 June 2016, 16h,... Alexandre de Brevern, 2 june 2016, ... Isabelle Landrieu, 26 May, 16h, ENS... Frances Sepavoric, 12 May, 16h, ENS... Thomas Pradeu, 7 April 2016, 9h, EN... Françoise Argoul, 3 march 2016, 1... Corinne Loutelier-Bourhis, 16/12/20... Aristotelis XENAKIS, 3 december 201... Fabian Kiessling, 26 november 2015,... Michaël Molinari, 20 november 2015... Dipankar Das Sarma, 28 October 2015... Olivier Donard, 22 october 2015, 16... E. Morvan & A.Grelard, 17/12/2015, ... Christophe Cullin, 10 september 201... Brigitte Lindet, 18 June 2015, 16h,... Marion Decossas, 4 June 2015, 16h, ... Pascale Schellenberger, 21 Mai 2015... F. Leal-Calderon, 7 May 2015, 16h, ... Ibrahim Abdulhalim, 9 April 2015, 1... Manon Carré, 26 March 2015, 14h, ... C. Bure & JM Schmitter, 19 March 20... T. Ogata & H. Ihara, 17 March 2015,... Banafshe Larijani, 12 March 2015, 1...
Événements Nouveau
Patricia DULOR Alain BRISSON Olivier LAMBERT Jochen LANG Pascale SUBRA-PATERNAULT Maria URDACI Marie-Christine DURRIEU Xavier SANTARELLI Gilles GUICHARD Ivan HUC Isabelle BESTEL Juan ELEZGARAY Antoine LOQUET Sophie LECOMTE Reiko ODA Marc BONNEU

Pubs (WS)

Année Type Auteur Filtrer >


1 […]
Bayard, Mathilde; Leal-Calderon, Fernando; Cansell, Maud;
Free fatty acids and their esters modulate isothermal crystallization of anhydrous milk fat
Food Chemistry, 2017, 218, 22-29
The effect of free fatty acids with different chain lengths or unsaturation degree on anhydrous milk fat (AMF) crystallization was evaluated. The impact of esterification was also studied using three triglycerides. Melted blends containing the additives at concentrations lower than 12 wt.% were quenched at 25 degrees C and isothermal crystallization was monitored by pulsed low-resolution nuclear magnetic resonance. In parallel, polarized light microscopy was used to observe the microstructure. Compounds based on long chain saturated fatty acids, i.e. palmitic, stearic, eicosanoic acids, tripalmitin and tristearin accelerated crystallization. Conversely, propanoic, hexanoic and oleic acids slowed down the process, while triacetin had no impact. Interestingly, above a critical concentration, the addition of palmitic, stearic or eicosanoic acids caused a transition from a one-step to two-step process. Gompertz model was used to fit the experimental data and to assess the influence of the molecular properties of the additives on the kinetic parameters. (C) 2016 Elsevier Ltd. All rights reserved.
2 […]
Bonhommeau, S.; Talaga, D.; Hunel, J.; Cullin, C.; Lecomte, S.;
Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Abeta1-42 Fibrils at the Nanometer Scale
Angew Chem Int Ed Engl, 2017, 56, 1771-1774
For the first time, natural Abeta1-42 fibrils (WT) implicated in Alzheimer's disease, as well as two synthetic mutants forming less toxic amyloid fibrils (L34T) and highly toxic oligomers (oG37C), are chemically characterized at the scale of a single structure using tip-enhanced Raman spectroscopy (TERS). While the proportion of TERS features associated with amino acid residues is similar for the three peptides, a careful examination of amide I and amide III bands allows us to clearly distinguish WT and L34T fibers organized in parallel beta-sheets from the small and more toxic oG37C oligomers organized in anti-parallel beta-sheets.
3 […]
Wolff, Philippe; Da Veiga, Cyrielle; Ennifar, Eric; Bec, Guillaume; Guichard, Gilles; Burnouf, Dominique; Dumas, Philippe;
Native ESI Mass Spectrometry Can Help to Avoid Wrong Interpretations from Isothermal Titration Calorimetry in Difficult Situations
Journal of the American Society for Mass Spectrometry, 2017, 28, 347-357
We studied by native ESI-MS the binding of various DNA-polymerase-derived peptides onto DNA-polymerase processivity rings from Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. These homodimeric rings present two equivalent specific binding sites, which leads to successive formation during a titration experiment of singly- and doubly occupied rings. By using the ESI-MS free-ring spectrum as a ruler, we derived by robust linear regression the fractions of the different ring species at each step of a titration experiment. These results led to accurate K-d values (from 0.03 to 0.5 mu M) along with the probability of peptide loss due to gas phase dissociation (GPD). We show that this good quality is due to the increased information content of a titration experiment with a homodimer. Isothermal titration calorimetry (ITC) led with the same binding model to K-d(ITC) values systematically higher than their ESI-MS counterparts and, often, to poor fit of the ITC curves. A processing with two competing modes of binding on the same site requiring determination of two (K-d, Delta H) pairs greatly improved the fits and yielded a second K-d(ITC) close to K-d(ESI-MS). The striking features are: (1) ITC detected a minor binding mode (similar to 20%) of 'low-affinity' that did not appear with ESI-MS; (2) the simplest processing of ITC data with only one (K-d, Delta H) pair led wrongly to the Kd of the low-affinity binding mode but to the Delta H of the high-affinity binding mode. Analogous misleading results might well exist in published data based on ITC experiments.
4 […]
Vallet-Courbin, Amelie; Lariviere, Melusine; Hocquellet, Agnes; Hemadou, Audrey; Parimala, Sarjapura-Nagaraja; Laroche-Traineau, Jeanny; Santarelli, Xavier; Clofent-Sanchez, Gisele; Jacobin-Valat, Marie-Josee; Noubhani, Abdelmajid;
A Recombinant Human Anti-Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting
PloS one, 2017, 12, e0170305-e0170305
Cells of the innate and adaptive immune system are key factors in the progression of atherosclerotic plaque, leading to plaque instability and rupture, potentially resulting in acute atherothrombotic events such as coronary artery disease, cerebrovascular disease and peripheral arterial disease. Here, we describe the cloning, expression, purification, and immunoreactivity assessment of a recombinant single-chain variable fragment (scFv) derived from a human anti-alphaIIbbeta3 antibody (HuAb) selected to target atheromatous lesions for the presence of platelets. Indeed, platelets within atheroma plaques have been shown to play a role in inflammation, in platelet-leucocyte aggregates and in thrombi formation and might thus be considered relevant biomarkers of atherosclerotic progression. The DNA sequence that encodes the anti-alphaIIbbeta3 TEG4 scFv previously obtained from a phage-display selection on activated platelets, was inserted into the eukaryote vector (pPICZalphaA) in fusion with a tag sequence encoding 2 cysteines useable for specific probes grafting experiments. The recombinant protein was expressed at high yields in Pichia pastoris (30 mg/L culture). The advantage of P. pastoris as an expression system is the production and secretion of recombinant proteins in the supernatant, ruling out the difficulties encountered when scFv are produced in the cytoplasm of bacteria (low yield, low solubility and reduced affinity). The improved conditions allowed for the recovery of highly purified and biologically active scFv fragments ready to be grafted in a site-directed way to nanoparticles for the imaging of atherosclerotic plaques involving inflammatory processes and thus at high risk of instability.
5 […]
Smulski, Cristian R.; Decossas, Marion; Chekkat, Neila; Beyrath, Julien; Willen, Laure; Guichard, Gilles; Lorenzetti, Raquel; Rizzi, Marta; Eibel, Hermann; Schneider, Pascal; Fournel, Sylvie;
Hetero-oligomerization between the TNF receptor superfamily members CD40, Fas and TRAILR2 modulate CD40 signalling
Cell Death & Disease, 2017, 8,
TNF receptor superfamily members (TNFRSF) such as CD40, Fas and TRAIL receptor 2 (TRAILR2) participate to the adaptive immune response by eliciting survival, proliferation, differentiation and/or cell death signals. The balance between these signals determines the fate of the immune response. It was previously reported that these receptors are able to self-assemble in the absence of ligand through their extracellular regions. However, the role of this oligomerization is not well understood, and none of the proposed hypotheses take into account potential hetero-association of receptors. Using CD40 as bait in a flow cytometry Forster resonance energy transfer assay, TNFRSF members with known functions in B cells were probed for interactions. Both Fas and TRAILR2 associated with CD40. Immunoprecipitation experiments confirmed the interaction of CD40 with Fas at the endogenous levels in a BJAB B-cell lymphoma cell line deficient for TRAILR2. TRAILR2-expressing BJAB cells displayed a robust CD40-TRAILR2 interaction at the expense of the CD40-Fas interaction. The same results were obtained by proximity ligation assay, using TRAILR2-positive and -negative BJAB cells and primary human B cells. Expression of the extracellular domains of Fas or TRAILR2 with a glycolipid membrane anchor specifically reduced the intrinsic signalling pathway of CD40 in 293T cells. Conversely, BJAB cells lacking endogenous Fas or TRAILR2 showed an increased NF-kappa B response to CD40L. Finally, upregulation of TRAILR2 in primary human B cells correlated with reduced NF-kappa B activation and reduced proliferation in response to CD40L. Altogether, these data reveal that selective interactions between different TNFRSF members may modulate ligand-induced responses upstream signalling events.
6 […]
Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Dieryck, Wilfrid; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J.; Lecommandoux, Sebastien;
Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation
Biomacromolecules, 2017, 18, 544-550
We have designed and prepared a recombinant elastin-like polypeptide (ELP) containing precisely positioned methionine residues, and performed the selective and complete oxidation of its methionine thioether groups to both sulfoxide and sulfone derivatives. Since these oxidation reactions substantially increase methionine residue polarity, they were found to be a useful means to precisely adjust the temperature responsive behavior of ELPs in aqueous solutions. In particular, lower critical solution temperatures were found to be elevated in oxidized sample solutions, but were not eliminated. These transition temperatures were found to be further tunable by the use of solvents containing different Hofmeister salts. Overall, the ability to selectively and fully oxidize methionine residues in ELPs proved to be a convenient postmodification strategy for tuning their transition temperatures in aqueous media.
7 […]
Linares, Romain; Tan, Sisareuth; Gounou, Celine; Brisson, Alain R.;
Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy
Methods in molecular biology (Clifton, N.J.), 2017, 1545, 43-54
Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.
8 […]
Jewginski, Michal; Granier, Thierry; Langlois d'Estaintot, Beatrice; Fischer, Lucile; Mackereth, Cameron D.; Huc, Ivan;
Self-Assembled Protein-Aromatic Foldamer Complexes with 2:3 and 2:2:1 Stoichiometries
Journal of the American Chemical Society, 2017, 139, 2928-2931
The promotion of protein dimerization using the aggregation properties of a protein ligand was explored and shown to produce complexes with unusual stoichiometries. Helical foldamer 2 was synthesized and bound to human carbonic anhydrase (HCA) using a nanomolar active site ligand. Crystal structures show that the hydrophobicity of 2 and interactions of its side chains lead to the formation of an HCA2-23 complex in which three helices of 2 are stacked, two of them being linked to an HCA molecule. The middle foldamer in the stack can be replaced by alternate sequences 3 or 5. Solution studies by CD and NMR confirm left-handedness of the helical foldamers as well as HCA dimerization.
9 […]
Gyorgy, Bence; Sage, Cyrille; Indzhykulian, Artur A.; Scheffer, Deborah I.; Brisson, Alain R.; Tan, Sisareuth; Wu, Xudong; Volak, Adrienn; Mu, Dakai; Tamvakologos, Panos I.; Li, Yaqiao; Fitzpatrick, Zachary; Ericsson, Maria; Breakefield, Xandra O.; Corey, David P.; Maguire, Casey A.;
Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV
Molecular therapy : the journal of the American Society of Gene Therapy, 2017, 25, 379-391
Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants invitro and with direct cochlear injection invivo. Exo-AAV shows no toxicity invivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs-/-]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness.
10 […]
Gan, Quan; Wang, Xiang; Kauffmann, Brice; Rosu, Frederic; Ferrand, Yann; Huc, Ivan;
Translation of rod-like template sequences into homochiral assemblies of stacked helical oligomers
Nature nanotechnology, 2017, 0,
At the molecular level, translation refers to the production of a new entity according to a template that has a different chemical composition. In this way, chemical information may be translated from one molecule to another. The process is useful to synthesize structures and thus functions that might be difficult to create otherwise, and it reaches exquisite levels of efficiency in biological systems, as illustrated by protein expression from mRNA templates or by the assembly of the tobacco mosaic virus capsid protein according to the length of its RNA. In synthetic systems, examples of template-directed syntheses are numerous, but general and versatile schemes in which a non-natural sequence actually encodes the information necessary to produce a different sequence are few and far from being optimized. Here we show a high-fidelity enzyme-free translation of long rod-like alkylcarbamate oligomers into well-defined sequences of stacked helical aromatic oligoamides. The features present in the rods, which include the number and distance between carbamate functions and stereogenic centres, template the self-assembly of complementary stacks of helices that each have a defined right (P) or left (M) handedness, length and single or double helicity. This process enables the production of very large (>20 kDa) abiotic artificial folded architectures (foldamers) that may, for example, serve as scaffolds to organize appended functional features at positions in space defined with atomic precision across nanometric distances.
11 […]
Colombani, Thibault; Peuziat, Pauline; Dallet, Laurence; Haudebourg, Thomas; Mevel, Mathieu; Berchel, Mathieu; Lambert, Olivier; Habrant, Damien; Pitard, Bruno;
Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery
Journal of controlled release : official journal of the Controlled Release Society, 2017, 249, 131-142
Protein expression and RNA interference require efficient delivery of DNA or mRNA and small double stranded RNA into cells, respectively. Although cationic lipids are the most commonly used synthetic delivery vectors, a clear need still exists for a better delivery of various types of nucleic acids molecules to improve their biological activity. To optimize the transfection efficiency, a molecular approach consisting in modifying the chemical structure of a given cationic lipid is usually performed, but an alternative strategy could rely on modulating the supramolecular assembly of lipidic lamellar phases sandwiching the nucleic acids molecules. To validate this new concept, we synthesized on one hand two paromomycin-based cationic lipids, with either an amide or a phosphoramide linker, and on the other hand two imidazole-based neutral lipids, having as well either an amide or a phosphoramide function as linker. Combinations of cationic and helper lipids containing the same amide or phosphoramide linkers led to the formation of homogeneous lamellar phases, while hybrid lamellar phases were obtained when the linkers on the cationic and helper lipids were different. Cryo-transmission electron microscopy and fluorescence experiments showed that liposomes/nucleic acids complexes resulting from the association of nucleic acids with hybrid lamellar phases led to complexes that were more stable in the extracellular compartment compared to those obtained with homogeneous systems. In addition, we observed that the most active supramolecular assemblies for the delivery of DNA, mRNA and siRNA were obtained when the cationic and helper lipids possess linkers of different natures. The results clearly show that this supramolecular strategy modulating the property of the lipidic lamellar phase constitutes a new approach for increasing the delivery of various types of nucleic acid molecules.
12 […]
Collie, Gavin W.; Bailly, Remy; Pulka-Ziach, Karolina; Lombardo, Caterina M.; Mauran, Laura; Taib-Maamar, Nada; Dessolin, Jean; Mackereth, Cameron D.; Guichard, Gilles;
Molecular Recognition within the Cavity of a Foldamer Helix Bundle: Encapsulation of Primary Alcohols in Aqueous Conditions
Journal of the American Chemical Society, 2017, 0,
Artificial synthetic molecules able to adopt well-defined stable secondary structures comparable to those found in nature ("foldamers") have considerable potential for use in a range of applications such as biomaterials, biorecognition, nanomachines and as therapeutic agents. The development of foldamers with the ability to bind and encapsulate "guest" molecules is of particular interest; as such an ability is a key step toward the development of artificial sensors, receptors and drug-delivery vectors. Although significant progress has been reported within this context, foldamer capsules reported thus far are largely restricted to organic solvent systems, and it is likely that the move to aqueous conditions will prove challenging. Toward this end, we report here structural studies into the ability of a recently reported water-soluble self-assembled foldamer helix bundle to encapsulate simple guest molecules within an internal cavity. Seven high-resolution aqueous crystal structures are reported, accompanied by molecular dynamics and high-field NMR solution data, showing for the first time that encapsulation of guests by a complex self-assembled foldamer in aqueous conditions is possible. The findings also provide ample insight for the future functional development of this system.
13 […]
Carasi, Paula; Racedo, Silvia Maria; Jacquot, Claudine; Elie, Anne Marie; de los Angeles Serradell, Maria; Urdaci, Maria C.;
Enterococcus durans EP1 a Promising Anti-inflammatory Probiotic Able to Stimulate slgA and to Increase Faecalibacterium prausnitzii Abundance
Frontiers in Immunology, 2017, 8,
Enterococcus species, principally Enterococcus faecium are used as probiotics since a long time with preference in animal applications but safety considerations were updated and also new uses as probiotics can be envisaged. Fifteen Enterococcus strains isolated from different foods were identified and analyzed for virulence factors and antibiotic resistance. Three Enterococcus durans strains were selected to study their immunomodulatory properties on PBMC and Caco2 cells. Two strains presented a profile toward a mild inflammatory Th1 response considering TNF-alpha/IL-10 and IL-1 beta/IL-10 cytokines ratios. The third strain EP1, presented an anti-inflammatory potential and was selected for in vivo studies. In mice, the strain was well tolerated and did not cause any adverse effects. EP1 administration increased the amount of IgA+ cells in mesenteric lymph node (MLN) after 7 days of administration. In fecal samples, the IgA content increased gradually and significantly from day 7 to day 21 in treated group. Additionally, IL-17, IL-6, IL-1 beta, IFN-gamma, and CXCL1 gene expression significantly decreased on day 21 in Peyer's patches and IL-17 decreased in MLN. Mice treated with the probiotic showed significant lower mRNA levels of pro-inflammatory cytokines and mucins in the ileum at day 7 while their expression was normalized at day 21. Colonic expression of il-1 beta, il6, and mucins remain diminished at day 21. Ileum and colon explants from treated mice stimulated in vitro with LPS showed a significant reduction in IL-6 and an increase in IL-10 secretion suggesting an in vivo protective effect of the probiotic treatment against a proinflammatory stimulus. Interestingly, analysis of feces microbiota demonstrated that EP1 administration increase the amount of Faecalibacterium prausnitzii, a butyrate-producing bacteria, which is known for its anti-inflammatory effects. In conclusion, we demonstrated that EP1 strain is a strong sIgA inducer and possess mucosal anti-inflammatory properties. This strain also modulates gut microbiota increasing Faecalibacterium prausnitzii, a functionally important bacterium. Thus, E. durans EP1 is not only a good candidate to increases F. prausnitzii in some cases of dysbiosis but can also be interesting in gut inflammatory disorders therapy.
14 […]
Brisson, Alain R.; Tan, Sisareuth; Linares, Romain; Gounou, Celine; Arraud, Nicolas;
Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study
Platelets, 2017, 0, 1-9
Cells release membrane vesicles in their surrounding medium either constitutively or in response to activating signals. Two main types of extracellular vesicles (EVs) are commonly distinguished based on their mechanism of formation, membrane composition and size. According to the current model, EVs shed from the plasma membrane, often called microvesicles, expose phosphatidylserine (PS) and range in size from 100 nm to 1 m, while EVs originating from endosomal multi-vesicular bodies, called exosomes, contain tetraspanin proteins, including CD63, and range in size from 50 to 100 nm. Heijnen et al. [1] have shown that activated platelets release EVs corresponding to these two types of vesicles, using negative staining electron microscopy (EM) and immuno-gold labeling. Here, we apply cryo-EM and immuno-gold labeling to provide a quantitative analysis of EVs released by platelets activated by thrombin, TRAP and CRP-XL, as well as EVs from serum. We show that EVs activated by these three agonists present a similar size distribution, the majority of them forming a broad peak extending from 50 nm to 1 m, about 50% of them ranging from 50 to 400 nm. We show also that 60% of the EVs from TRAP or CRP-XL activation expose CD41, a majority of them exposing also PS. To explain the presence of large EVs CD41-negative or PS-negative, several alternative mechanisms of EV formation are proposed. We find also that the majority of EVs in activated platelet samples expose CD63, and distinguish two populations of CD63-positive EVs, namely large EVs with low labeling density and small EVs with high labeling density.
15 […]
Bobo, C.; Chaignepain, S.; Henry, S.; Vignaud, H.; Ameadan, A.; Marchal, C.; Prado, E.; Doutch, J.; Schmitter, J. M.; Nardin, C.; Lecomte, S.; Cullin, C.;
Synthetic toxic Abeta1-42 oligomers can assemble in different morphologies
Biochim Biophys Acta, 2017, 1861, 1168-1176
BACKGROUND: Alzheimer's disease is the most common neurodegenerative disease associated with aggregation of Abeta peptides. Abeta toxicity is mostly related to the capacity of intermediate oligomers to disrupt membrane integrity. We previously expressed Abeta1-42 in a eukaryotic cellular system and selected synthetic variants on their sole toxicity. The most toxic mutant G37C forms stable oligomers. METHODS: Different biophysical methods (Fluorescence spectroscopy, cross-linking, mass spectrometry (MS), Small Angle X-ray Scattering (SAXS), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), calcein leakage) were used. RESULTS: The oligomers are mostly populated by a 14mers resulting from the packing of homodimers. These homodimers come from the formation of a disulfide bridge between two monomers. This link stabilizes the multimers and prevents the assembly into amyloid fibrils. These oligomers affect the membrane integrity. The reduction of disulfide bonds leads to a rearrangement and redirects assembly of Abeta amyloid fibrils. CONCLUSION: The toxic synthetic AbetaG37C mutant can assemble into an amyloid of unusual morphology through the formation of anti-parallel beta-sheets. This pathway involves the formation of oligomers resulting from the arrangement of Abeta dimers linked by covalent di-sulfide link, being these oligomers harmful for the membranes. GENERAL SIGNIFICANCE: The capacity to produce large amount of stable oligomers without additional detergents or extrinsic cross-linkers allow further structural and biophysical studies to understand their capacity to assemble and disrupt the membranes, a key event in Alzheimer's disease.
CBMN Accueil Intro Actualités Séminaires Pubs (WS) Plateformes
Départements Administration Biologie et Biotechnologie Chimie Biomimétique et Thérapeutique Chimie Biophysique
Un problème sur le site? Contactez notre webmaster : webmaster@cbmn.u-bordeaux.fr
Services Direction Directoire Scientifique Administration Communication Hygiène & Sécurité WEB Editorial Committee Animation Scientifique Conseil d'Unité Plateau Technique Offres d'Emploi
EXT INDIA UMT FOLIES UREKA IPEP master Master AC2QMAPS Réseau RMN Aquitain GEM LIA France-Japan
Équipes Patricia DULOR Alain BRISSON Olivier LAMBERT Jochen LANG Pascale SUBRA-PATERNAULT Maria URDACI Marie-Christine DURRIEU Xavier SANTARELLI Gilles GUICHARD Ivan HUC Isabelle BESTEL Juan ELEZGARAY Antoine LOQUET Sophie LECOMTE Reiko ODA Marc BONNEU
informations Mentions légales Plan d'accès Réalisation : Little Big Studio
Dernière mise à jour : 22/03/2017

CNRS Université de Bordeaux Institut Polytechnique de Bordeaux

CBMN Allée de Geoffroy St Hilaire Bât B14
33600 Pessac
Tél. : +33 (0)5 40 00 68 00
Fax : +33 (0)5 40 00 22 00
Mail : contact@cbmn.u-bordeaux.fr